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Abstract

Conformal prediction is a distribution-free uncertainty quantification framework
with finite-sample guarantees. Recent advances in conformal prediction have ex-
tended its standard framework to online learning settings. This report surveys the
advances in online conformal prediction algorithms and highlights shared algo-
rithmic and problem structures with online learning frameworks, with a particular
focus on presenting two recent algorithms that build upon the Adaptive Conformal
Inference algorithm and examining their coverage and regret guarantees.

1 Introduction

There are many tasks where machine learning models are expected to output the most likely response
while also offering some form of actionable uncertainty quantification. However, prior uncertainty
estimation methods typically require additional assumptions about data distributions, e.g., Bayesian
neural networks need to “fit” a distribution over network weights Neal [2012], Gal and Ghahramani
[2016]. Ensemble methods Lakshminarayanan et al. [2017], Jain et al. [2020], on the other hand,
aim to characterize variability across multiple models, but rely critically on the included models and
struggle to provide guarantees. In light of these challenges, conformal prediction has emerged as a
rigorous, model-agnostic, distribution-free approach for constructing prediction sets/intervals with
finite-sample coverage guarantees.

The only requirement for implementing conformal prediction is exchangeability for the joint dataset
consisting of the calibration data (discussed in Section 3) and the new data, which is a weaker
condition than i.i.d., yet is typically violated in online settings. To address this issue, a line of effort
has been put in the development of conformal prediction frameworks with distribution shifts. By
utilizing online learning approaches, recent advances in conformal prediction have extended its
standard framework to online algorithms while still achieving promising guarantees.

The goal of this report is to survey and analyze coverage and regret guarantees for online conformal
prediction algorithms, focusing on presenting the Strongly Adaptive Online Conformal Prediction
(SAOCP) algorithm from Bhatnagar et al. [2023] and the Dynamically-Tuned Adaptive Conformal
Inference (DtACI) algorithm from Gibbs and Candès [2024]. We aim to establish their regret
improvement in a relatively unified manner, including coverage properties and dynamic regret. This
report is structured as follows. In Section 2, we review related work and introduce online conformal
prediction as a line of effort that incorporates online learning to tackle distribution shifts; In Section
3, we present the background and problem formulation of conformal prediction and highlight ACI’s
algorithmic developments; we present two meta-algorithms in Section 4; Section 5 concludes the
report with discussion and summary.

2 Related Work

Online conformal prediction is motivated by the issue of distribution shift, where a key assumption
of conformal prediction, exchangeability, is violated. To address this problem, there are roughly



two distinct lines of effort. A line of work introduces weighting schemes by exploiting additional
knowledge about the distribution shift Tibshirani et al. [2019], Podkopaev and Ramdas [2021], Barber
et al. [2023], referred to as “weighted” conformal prediction in Prinster et al. [2024]. This direction
of work also includes Xu and Xie [2021], Prinster et al. [2022], Fannjiang et al. [2022], Yang et al.
[2024].

Another line of work aims to learn adaptive thresholds that are adjusted upon observing the miscov-
erage of recent instances Gibbs and Candès [2021], Feldman et al. [2023], Bhatnagar et al. [2023],
Gibbs and Candès [2024], referred to as “adaptive” conformal prediction in Prinster et al. [2024].
We focus on the latter. In particular, many works out of this category incorporate online learning to
design algorithms with dynamic regret guarantees. Some works also aim for algorithms with optimal
regret in both stochastic and adversarial environments. This line of effort also includes Zaffran et al.
[2022], Bastani et al. [2022], Angelopoulos et al. [2023a].

3 Problem Formulation

3.1 Conformal Prediction

We start by presenting a general form of conformal prediction. While a canonical classification (or
regression) task is to find the true label (or the real-valued response) Ytest ∈ Y for a new instance
Xtest ∈ X with some model, conformal prediction Vovk et al. [2005], Angelopoulos et al. [2023b]
returns a prediction set (or interval) C (Xtest ) such that on average

P (Ytest ∈ C (Xtest )) ≥ 1− α (1)

holds, where α is the pre-specified error rate (tolerance level). In particular, conformal prediction
defines a score function S : X × Y → R, assuming access to a base model f̂ . For a given dataset
{(Xi, Yi)}ni=1, such scores Si = S (Xi, Yi) are sometimes referred to nonconformity scores, which
empirically reflect how unlikely the model considers a given value to be the true response. An example
score function could be S(x, y) = |y − f̂ (x) |.
In terms of the specific algorithmic procedure, there are two versions of conformal prediction, split
and full. Split conformal prediction picks the 1 − α quantile Q1−α of the nonconformity scores
{Si}ni=1 computed with the given dataset {(Xi, Yi)}ni=1 (the calibration dataset), and constructs the
prediction set/interval for Xn+1 as

C (Xn+1) = {y : S (Xn+1, y) ≤ Q1−α} (2)

Full conformal requires refitting the model for each possible y ∈ Y . This creates for each y a
corresponding dataset {(Xi, Yi)}ni=1 ∪ {(Xn+1, y)}. As a result, each y also corresponds to a 1− α
quantile Qy

1−α of the nonconformity scores {Sy
i }ni=1 computed with its corresponding dataset. The

prediction set/interval is then constructed as

C (Xn+1) =
{
y : Sy (Xn+1, y) ≤ Qy

1−α

}
(3)

Irrespective of the variant of conformal prediction, if data in {(Xi, Yi)}ni=1 ∪ {(Xn+1, Yn+1)} are
exchangeable1, forming prediction sets as in 2 or 3 ensures that 1 holds marginally.

There is a tension in conformal prediction between coverage and efficiency. For example, the
desideratum for conformal classification is to have the prediction set as small as possible while still
maintaining Eq 1. On the other hand, The 1−α guarantee Eq 1 can be trivially satisfied by outputting
the entire label space 1− α of the time, and outputting an empty set α of the time.

Online conformal prediction instead studies the setting where the data (X1, Y1) , . . . , (XT , YT ) are
coming in a sequential fashion, which violates the exchangeability assumption. Online conformal
prediction typically maintains a growing calibration dataset by including each new instance from
each round.

1Random variables {Z1, . . . , Zn} are exchangeable if their joint distribution is unchanged under permuta-
tions:

(Z1, . . . , Zn)
d
=

(
Zσ(1), . . . , Zσ(n)

)
,

for any permutations σ. Note that i.i.d. is an example (and a special case) of exchangeability.
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3.2 Adaptive Conformal Inference (ACI)

Here we review one of the earliest works, the Adaptive Conformal Inference (ACI, Gibbs and Candès
[2021]), which maintains an adaptive tolerance level αt that gets updated with step size γ as

αt+1 = αt + γ (α− 1 [Yt /∈ Cαt
t ]) (4)

where α is the pre-specified tolerance level, and Cαt
t is the prediction set for Xt using tolerance level

αt. At each time step t, ACI examines the coverage of the prediction set Cαt
t after the true response

Yt is revealed, increases or decreases the tolerance level accordingly, and then add (Xt, Yt) to the
dataset. An improvement can be made to this update to provide a more holistic evaluation of coverage
while placing more weight to more recent errors:

αt+1 = αt + γ

(
α−

t∑
τ=1

wτ1 [Yτ /∈ Cατ
τ ]

)
where Cατ

τ is the corresponding prediction set constructed with tolerance level ατ at time τ , and
{wτ}1≤τ≤t ⊆ [0, 1] is a sequence of increasing weights with

∑t
τ=1 wτ = 1. However, Gibbs and

Candès [2021] found that this alternative produced almost the same result as Eq 4.

It is also noted that the simple online update Eq 4 can be viewed as a gradient descent step with
regard to the following pinball loss:

L (α∗
t , αt) = (α− 1 [α∗

t < αt]) (α
∗
t − αt) (5)

where α∗
t is the “true” (highest) tolerance level such that its corresponding prediction set is the

smallest set that still covers the true value:

α∗
t := sup {α : Yt ∈ Cαt }

We can then rewrite the update as

αt+1 = αt + γ (α− 1 [Yt /∈ Cαt
t ])

= αt + γ (α− 1 [α∗
t < αt])

= αt − γ∇αt
L (α∗

t , αt)

Aside: Eq 5 shares a similar quantile structure as in the newsvendor problem. Suppose St :=

S(Xt, Yt) denotes the true nonconformity score of instance (Xt, Yt) and that Ŝt is the estimated
score used as a threshold to pick labels. We assume St ∼ S where S is some unknown nonconformity
score distribution that depends on the unknown data distribution (S : X × Y → R). This can be
illustrated as

C
(
Ŝt

)
= h

(
Ŝt − St

)+
+ b

(
St − Ŝt

)+
= α ·

(
Ŝt − St

)+
︸ ︷︷ ︸

over-coverage

+(1− α) ·
(
St − Ŝt

)+
︸ ︷︷ ︸

under-coverage

which aligns with how Ŝt is picked as b
b+h -quantile of the nonconformity scores. However, this

formalization is insufficient to establish sub-interval validity guarantees and also deviates from the
true objective of online conformal prediction, as discussed in the next subsection.

3.3 Analyzing Online Conformal Prediction Algorithms

The basic ACI algorithm has bounded coverage deviation:∣∣∣∣∣ 1T
T∑

t=1

1 [Yt /∈ Cαt
t ]− α

∣∣∣∣∣ ≤ max {α1, 1− α1}+ γ

Tγ
(6)

The proof of this coverage bound can be found in AppendixA.1.
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To evaluate online conformal prediction algorithms, it would be insufficient to just establish the
coverage error. We would be interested in tacking the tension between coverage and efficiency across
arbitrary time intervals. Specifically, while the regret over the entire horizon can be defined as

Regret(T ) :=
1

T

T∑
t=1

L (α∗
t , αt)− inf

α⋆

1

T

T∑
t=1

L (α∗
t , α

⋆)

we aim to establish a dynamic regret for any interval I = [m,n] ⊆ [T ]:

Regret(I) :=
1

|I|

n∑
t=m

L (α∗
t , αt)−

1

|I|

n∑
t=m

L (α∗
t , α

⋆
t ) (7)

We remark that L (α∗
t , αt) in Eq 5 is not the true objective. Recall that α∗

t is the highest tolerance
level that leads to the smallest prediction set covering the true Yt. But our goal is to find αt that’s
close to α⋆

t where P
(
Yt ∈ C

α⋆
t

t

)
= 1− α. We would not be expecting to have αt correctly include

Xt in each t (that’d be over-covering) – we aim for 1− α instead.

We will be presenting a comparative analysis of two modified online conformal algorithms (concretely,
two meta-algorithms that manage multiple experts) with their regrets. We focus on the SAOCP
algorithm that utilizes strongly adaptive regret minimization and measures the worst-case regret over
all intervals of fixed length Bhatnagar et al. [2023], and the DtACI algorithm that supports tunable
step size in gradient descent update Gibbs and Candès [2024].

4 Meta-Algorithms

4.1 Dynamically-Tuned Adaptive Conformal Inference (DtACI)

One of the major issues of ACI is that the choice of the step size critically affects its performance. To
mitigate this, DtACI employs the idea of maintaining a candidate set of step sizes and learning to
steer the algorithm towards picking the best step size. This meta-algorithm manages multiple experts
to run multiple ACI algorithms in parallel. Each expert i corresponds to an ACI algorithm with the
step size γi. Like the online learning algorithms we have seen in class (e.g., Hedge, EXP3), DtACI
adopts an exponential re-weighting scheme to update the weights and inform the choice of the step
size.

We outlined DtACI in Algorithm 1. Given the target error rate α, any pretrained model f̂ , and
parameters σ and η, we assume K experts with a candidate set of step sizes {γi}1≤i≤K that we want
to explore, initialized tolerance levels:

{
αi
1

}
1≤i≤K

(which can be initialized as α), and initialized
weights:

{
wi

1

}
1≤i≤K

(each initialized as 1). The algorithm also maintains a calibration dataset Dt

that will contain past observations {(Xi, Yi)}t−1
i=1 .

4.1.1 Coverage Error

To establish a bound for how the the coverage error deviates from the nominal error rate α, we
assume instead that parameters σ and η are replaced with time-indexed σt and ηt. By defining
errt = 1 [Yt /∈ Cαt

t ], we present the long-term coverage error deviation in the following theorem.
Theorem 1. Suppose that on iteration t, the parameters η and σ are replaced by values ηt and σt.
Let γmin := min γi and γmax := max γi, then∣∣∣∣∣ 1T

T∑
t=1

E [errt]− α

∣∣∣∣∣ ≤ 1 + 2γmax

Tγmin
+

(1 + 2γmax)
2

γmin

1

T

T∑
t=1

ηte
ηt(1+2γmax) + 2

1 + γmax

γmin

1

T

T∑
t=1

σt,

where the expectation is over the randomness in Algorithm 1. In particular, if limt→∞ ηt =

limt→∞ σt = 0, then limT→∞
1
T

∑T
t=1 errt

a.s.
= α.

The proof can be found in AppendixA.2. We would be able to see that if σt and ηt decay to 0, the
coverage rate will converge to the nominal error rate almost surely.
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Algorithm 1 Dynamically-Tuned Adaptive Conformal Inference (DtACI) Gibbs and Candès [2024]

Require: Assuming K experts; target error rate α; parameters σ and η; pretrained model f̂ ;
1: corresponding step sizes {γi}1≤i≤K

2: corresponding initialized tolerance levels:
{
αi
1

}
1≤i≤K

3: corresponding initialized weights:
{
wi

1

}
1≤i≤K

4: // Dt will contain past observations {(Xi, Yi)}t−1
i=1

5: // the true tolerance level α∗
t can be computed when Yt is revealed.

6: for t = 1, 2, · · · , T do
7: Update probabilities pit := wi

t/
∑

1≤j≤k w
j
t ,∀1 ≤ i ≤ k.

8: Pick tolerance level αt = αi
t for this round with probability pit.

9: Observe Xt, output the corresponding prediction set Cαt
t based on αt, f̂ and Dt.

10: Construct prediction sets Cα
i
t

t for each αi
t based on Dt as well.

11: Reveal the true label Yt; Dt+1 = Dt ∪ {(Xt, Yt)}
12: for i = 1, 2, · · · ,K do
13: w̄i

t ← wi
t · exp

(
−η · L

(
α∗
t , α

i
t

))
14: wi

t+1 ← (1− σ)w̄i
t +

σ
K

∑K
j=1 w̄

j
t

15: αi
t+1 = αi

t + γi

(
α− 1

[
Yt /∈ Cα

i
t

t

])
16: end for
17: end for

4.1.2 Dynamic Regret

We now establish the dynamic regret in the following theorem.
Theorem 2. Let γmax := max γi and assume that γ1 < γ2 < · · · < γK with γi+1/γi ≤ 2 for
all 1 < i ≤ K. Assume additionally that γK ≥

√
1 + 1/|I| and σ ≤ 1/2. Then, for any interval

I = [m,n] ⊆ [T ] and any sequence α⋆
m, . . . , α⋆

n ∈ [0, 1],

1

|I|

n∑
t=m

E [L (α∗
t , αt)]−

1

|I|

n∑
t=m

L (α∗
t , α

⋆
t ) ≤

log(K/σ) + 2σ|I|
η|I|

+
η

|I|

n∑
t=m

E
[
L (α∗

t , αt)
2
]

+ 4 (1 + γmax)
2
max


√∑n

t=m+1

∣∣α⋆
t − α⋆

t−1

∣∣+ 1

|I|
, γ1


where the expectation is over the randomness in Algorithm 1.

The proof can be found in AppendixA.3. It’s worth noting that we can tune parameters to get a
simpler bound with the assumption that

γ1 ≤

√∑n
t=m+1

∣∣α⋆
t − α⋆

t−1

∣∣+ 1

|I|

which can be viewed as a quantification of the distribution shift’s “size”. Then by setting σ = 1/(2|I|)

and η =

√
log(2K|I|)+1∑n

t=m E[L(α∗
t ,αt)

2]
, we can obtain

1

|I|

n∑
t=m

E [L (α∗
t , αt)]−

1

|I|

n∑
t=m

L (α∗
t , α

⋆
t ) ≤2

√
log(2K|I|) + 1

|I|

√√√√ 1

|I|

n∑
t=m

E
[
L (α∗

t , αt)
2
]

+ 4 (1 + γmax)
2

√∑n
t=m+1

∣∣α⋆
t − α⋆

t−1

∣∣+ 1

|I|

=O

(√
log(|I|)
|I|

)
+O

√∑n
t=m+1

∣∣α⋆
t − α⋆

t−1

∣∣
|I|


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4.2 Strongly Adaptive Online Conformal Prediction

We first present an equivalent framing of conformal regression which aims to construct a prediction
interval around the base prediction f̂ (Xn+1) with half width r:

Cr (Xn+1) :=
[
f̂ (Xn+1)− r, f̂ (Xn+1) + r

]
Therefore, r would be the “radius” that we want to predict based on historical radii of the calibration
data (which are exactly the nonconformity scores). This notion is different from conformalized
quantile regression Romano et al. [2019].

Similarly, we can derive the pinball loss function for online conformal regression as

L (r∗t , r̂t) = (α− 1 [r∗t > r̂t]) (r̂t − r∗t )

where r∗t is the “true” (smallest) radius such that its corresponding prediction interval is the shortest
interval that still covers the true value:

r∗t := inf {r : Yt ∈ Crt }

Adapted from Jun et al. [2017], SAOCP is also a meta-algorithm that manages a set of experts. Unlike
DtACI which works with a fixed set of experts, SAOCP maintains an active set of experts. In each
round t, the algorithm will initialize a new expert It and assign it a “lifetime” L(t) defined by Eq 8,
indicating the duration of expert It being active. it is seen that there will be at most g ⌊log2 t⌋ active
experts in any round t. This design enables implicitly placing more weight on recent instances and
initializes the newly instantiated expert with the latest predicted radius.

We outlined SAOCP in Algorithm 2. We mark that each expert should be viewed as designed to
be Scale-Free OGD Orabona and Pál [2018], which decays its learning rate based on cumulative
gradient norms. In each round, SAOCP outputs the predicted radius by aggregating active experts’
predicted radii. After observing the true response, the algorithm updates each active expert’s weight
and radius.

4.2.1 Coverage Error

To establish the coverage error, we would need to consider a randomized SAOCP. Instead of ag-
gregating experts’ predicted radii, we pick an expert’s predicted radius r̂it to be the prediction with
probability pi, just like how we pick an expert’s tolerance level in Algorithm1. Then by defining
errt = 1

[
Yt /∈ C r̂tt

]
, SAOCP achieves∣∣∣∣∣ 1T

T∑
t=1

E [errt]− α

∣∣∣∣∣ ≤ O

(
inf
β

(
T 1/2−β + T β−1Sβ(T )

))
where Sβ(T ) measures the expert weights’ smoothness and each individual expert’s cumulative
gradient norms. The formal proof and the detailed explanation for Sβ(T ) can be found in Appendix
B.4 of Bhatnagar et al. [2023]. With some additional assumption that, if there exists some β ∈ (1/2, 1)

and γ < 1− β such that Sβ(T ) ≤ Õ(T γ), then we can obtain a simpler bound∣∣∣∣∣ 1T
T∑

t=1

E [errt]− α

∣∣∣∣∣ ≤ Õ
(
T−min{1/2−β,β−1+γ}

)
= oT (1)

4.2.2 Dynamic Regret

We now establish the dynamic regret in the following theorem.

Theorem 3. For any interval I = [m,n] ⊆ [T ], SAOCP in Algorithm2 achieves

n∑
t=m

L (r∗t , r̂t)−min
r⋆m:n

n∑
t=m

L (r∗t , r⋆t ) ≤ Õ

B

( n∑
t=m+1

∣∣r∗t − r∗t−1

∣∣)1/3

|I|2/3 +
√
|I|


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Algorithm 2 Strongly Adaptive Online Conformal Prediction (SAOCP) Bhatnagar et al. [2023]

Require: Target error rate α; radius bound B; learning rate η ← B/
√
3, pretrained model f̂ .

1: // Dt will contain past observations {(Xi, Yi)}t−1
i=1

2: // the true radius r∗t can be computed when Yt is revealed.
3: for t = 1, 2, · · · , T do
4: Initialize a new expert It with α, η, and the predicted r̂t−1 from last round (if r̂t−1 exists);

initialize its weight wt
t ← 0.

5: Active set of experts: At = {Ii : t− L(i) < i ≤ t}, where L(i) is defined as

L(i) := g ·max
n∈Z
{2n : i ≡ 0 mod 2n} (8)

6: // g ∈ Z≥1 is a multiplier; at most g ⌊log2 t⌋ experts are active in each round t.
7: Set prior probability πi ∝ i−2 (1 + ⌊log2 i⌋)

−1
1 [Ii ∈ At]

8: Compute p̂i = πi

[
wi

t

]
+

for all Ii ∈ At and normalize them as pi.
9: Aggregate experts’ radii: r̂t =

∑
i∈At

pir̂
i
t

10: Observe Xt, output the corresponding prediction interval C r̂tt based on r̂t, f̂ and Dt.
11: Reveal the true response Yt; Dt+1 = Dt ∪ {(Xt, Yt)}
12: for Ii ∈ At do
13: r̂it+1 = r̂it − η · ∇L(r∗t ,r̂

i
t)√∑t

j=1∥∇L(r∗j ,r̂ij)∥22

14: git =

{
1
B

(
L (r∗t , r̂t)− L

(
r∗t , r̂

i
t

))
wi,t > 0

1
B

[
L (r∗t , r̂t)− L

(
r∗t , r̂

i
t

)]
+

wi,t ≤ 0

15: wi
t+1 = 1

t−i+1

(∑t
j=i g

i
j

)(
1 +

∑t
j=i w

i
jg

i
j

)
16: end for
17: end for

The proof can be found in AppendixA.4. It’s worth noting that this is an application of the bound
derived in Zhang et al. [2018]. Dividing it by |I| gives

1

|I|

n∑
t=m

L (r∗t , r̂t)−min
r⋆m:n

1

|I|

n∑
t=m

L (r∗t , r⋆t ) ≤ Õ

B

(∑n
t=m+1

∣∣r∗t − r∗t−1

∣∣
|I|

)1/3

+ 1/
√
|I|


5 Discussion and Summary

We note that both of the two presented meta-algorithms achieve valid long-term coverage.
In terms of the dynamic regret that we are more interested in, we find that converting ra-
dius r back to tolerance level α to remove the bound factor B in SAOCP’s dynamic regret
yields Õ

([∑n
t=m+1

∣∣α∗
t − α∗

t−1

∣∣ /|I|]1/3 + |I|−1/2
)

, while the dynamic regret of DtACI implies

Õ
([∑n

t=m+1

∣∣α⋆
t − α⋆

t−1

∣∣ /|I|]1/2). This suggests that with mild additional assumptions, DtACI
achieves better theoretical performance. It is also noted in Bhatnagar et al. [2023] that an earlier
version of Gibbs and Candès [2024] had already established a better dependence on the average path
length, but it adapted poorly when choosing the step size simultaneously for all intervals. It is seen
that the current version of DtACI has alleviated the reliance on the choice of learning rate.

For a more fine-grained comparison, a crucial aspect of is to evaluate the algorithms in real-world
applications. Gibbs and Candès [2024] also compared two other works built on ACI, Online Expert
Aggregation on ACI (AgACI) Zaffran et al. [2022], and MultiValid Predictor (MVP) Bastani et al.
[2022]. Online conformal prediction algorithms are typically evaluated in time series forecasting
tasks. Two experiments adopted in Gibbs and Candès [2024] are stock market and Covid-19 case
counts. However, we observe that the discrepancy in performance for different algorithms can be
subtle in some tasks, and some algorithms (e.g., MVP) are even worse in performance compared to
the naive baseline that uses a fixed tolerance level. While conformal prediction is generally expected
to work without any distributional assumption, many online conformal algorithms are implicitly
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relying on assumptions that are not fully explored in the theoretical development. We expect the
future line of work on online conformal prediction to be informed by advances in online learning,
and such algorithms to be designed to exploit problem structures.
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A Proofs

Detailed proofs can be found in Gibbs and Candès [2021, 2024], Bhatnagar et al. [2023].

A.1 Proof of ACI Coverage Bound

Proof We first show that ∀t ∈ N,
αt ∈ [−γ, 1 + γ] (9)

We prove by contradiction that there exists some inft αt < −γ (It would be identical to do contradic-
tion by assuming supt αt > 1 + γ). Note that supt |αt+1 − αt| = supt γ |α− 1 [Yt /∈ Cαt

t ]| < γ. It
would indicate that there is some t ∈ N such that αt < 0 and αt+1 < αt. However,

αt < 0 =⇒ Qt (1− αt) =∞ =⇒ αt+1 = αt + γ (α− 1 [Yt /∈ Cαt
t ]) ≥ αt

since the Cαt
t would now be the entire label space that trivially covers Yt. A contradiction is thus

reached. That is, for any αt < 0, it holds that αt+1 ≥ αt, and the difference between any αt and
αt+1 is less than γ, so there would not be any αt < −γ (and similarly, no αt > 1 + γ).

By expanding Eq 4, we can write

αT+1 = α1 +

T∑
t=1

γ (α− 1 [Yt /∈ Cαt
t ])

where αT+1 ∈ [−γ, 1 + γ] as we have just proved. Rearranging the terms yields the result.

9



A.2 Proof of DtACI’s Coverage Error (Theorem1)

Proof Gibbs and Candès [2024](Appendix C.6) Let α̃t :=
∑

i p
i
tα

i
t/γi. We observe that

α̃t =
∑
i

pit

(
αi
t+1 − γi

(
α− 1

[
Yt /∈ Cα

i
t

t

]))
γi

=
∑
i

pitα
i
t+1

γi
+
∑
i

pit

(
1
[
Yt /∈ Cα

i
t

t

]
− α

)
= α̃t+1 +

∑
i

(
pit − pit+1

)
αi
t+1

γi
+
∑
i

pit

(
1
[
Yt /∈ Cα

i
t

t

]
− α

)
Thus,

E [1 [Yt /∈ Cαt
t ]]− α = α̃t − α̃t+1 +

∑
i

(
pit+1 − pit

)
αi
t+1

γi
(10)

For ease of notation, let Wt :=
∑

i w
i
t and p̃it+1 :=

pi
t exp(−ηtL(α∗

t ,α
i
t))∑

i′ p
i′
t exp(−ηtL(α∗

t ,α
i′
t ))

. By definition,

pit+1 =
wi

t+1∑
i′ w

i′
t+1

= (1− σt) p̃
i
t+1 +

σt

k

Then

p̃it+1 − pit =
pit exp

(
−ηtL

(
α∗
t , α

i
t

))∑
i′ p

i′
t exp

(
−ηtL

(
α∗
t , α

i′
t

)) − pit

= pit

exp
(
−ηtL

(
α∗
t , α

i
t

))
−
∑

i′ p
i′

t exp
(
−ηtL

(
α∗
t , α

i′

t

))
∑

i′ p
i′
t exp

(
−ηtL

(
α∗
t , α

i′
t

))
= pit

∑
i′ p

i′

t

(
exp

(
−ηtL

(
α∗
t , α

i
t

))
− exp

(
−ηtL

(
α∗
t , α

i′

t

)))
∑

i′ p
i′
t exp

(
−ηtL

(
α∗
t , α

i′
t

))
= pit

∑
i′ p

i′

t exp
(
−ηtL

(
α∗
t , α

i′

t

))(
exp

(
ηtL

(
α∗
t , α

i′

t

)
− ηtL

(
α∗
t , α

i
t

))
− 1
)

∑
i′ p

i′
t exp

(
−ηtL

(
α∗
t , α

i′
t

))
= pit

∑
i′

p̃i
′

t+1

(
exp

(
ηtL

(
α∗
t , α

i′

t

)
− ηtL

(
α∗
t , α

i
t

))
− 1
)
.

By Eq 9 we know that αi
t ∈ [−γi, 1 + γi] and thus that

∣∣∣L(α∗
t , α

i′

t

)
− L

(
α∗
t , α

i
t

)∣∣∣ ≤ max{α, 1−

α}
∣∣∣αi′

t − αi
t

∣∣∣ ≤ 1 + 2γmax. By the mean value theorem,∣∣∣exp(ηtL(α∗
t , α

i′

t

)
− ηtL

(
α∗
t , α

i
t

))
− 1
∣∣∣ ≤ ηt (1 + 2γmax) exp (ηt (1 + 2γmax))

and also,

∣∣p̃it+1 − pit
∣∣ ≤ pitηt (1 + 2γmax) exp (ηt (1 + 2γmax))

Applying Eq 9 again yields∣∣∣∣∣∑
i

(
pit+1 − pit

)
αi
t+1

γi

∣∣∣∣∣ ≤ (1− σt)
∑
i

∣∣∣∣∣
(
p̃it+1 − pit

)
αi
t+1

γi

∣∣∣∣∣+ σt

∑
i

∣∣∣∣∣
(
1/k − pit

)
αi
t+1

γi

∣∣∣∣∣
≤ ηt (1 + 2γmax)

2

γmin
exp (ηt (1 + 2γmax)) + 2σt

1 + γmax

γmin
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Summing over t in Eq10 gives the following inequality,∣∣∣∣∣ 1T
T∑

t=1

E [errt]− α

∣∣∣∣∣ ≤ |α̃1 − α̃T+1|
T

+
(1 + 2γmax)

2

γmin

1

T

T∑
t=1

ηte
ηt(1+2γmax) +2

1 + γmax

γmin

1

T

T∑
t=1

σt

Using Eq 9 one more time leads to γminα̃t ∈ [−γmax, 1+ γmax] and thus |α̃1 − α̃T+1| ≤
(1 + 2γmax) /γmin. Plugging this back to the previous expression gives the bound.

A.3 Proof of DtACI’s Dynamic Regret (Theorem2)

Proof We need two lemmas that are adapted from Gradu et al. [2023] and Hazan [2019] respec-
tively.
Lemma 4. (Adapted from Lemma A.2 in Gradu et al. [2023]) Assume that σ ≤ 1/2. Then, for any
interval I = [m,n] ⊆ [T ] and any 1 ≤ i ≤ K

n∑
t=m

E [L (α∗
t , αt)] ≤

n∑
t=m

L
(
α∗
t , α

i
t

)
+ η

n∑
t=m

E
[
L (α∗

t , αt)
2
]
+

1

η
(log(K/σ) + |I|2σ),

where the expectation is over the randomness in Algorithm1 and the data α∗
1, . . . , α

∗
T can be viewed

as fixed.
Lemma 5. (Theorem 10.1 of Hazan [2019]) For any fixed interval I = [m,n], sequence α⋆

m, . . . , α⋆
n,

and 1 ≤ i ≤ K,
n∑

t=m

L
(
α∗
t , α

i
t

)
−

n∑
t=m

L (α∗
t , α

⋆
t ) ≤

3

2γi
(1 + γi)

2

(
n∑

t=m+1

∣∣α⋆
t − α⋆

t−1

∣∣+ 1

)
+

1

2
γi|I|.

Now fix any i ∈ [K], we can obtain
s∑

t=r

E [L (α∗
t , αt)]−

s∑
t=r

L (α∗
t , α

⋆
t )

=

(
n∑

t=m

E [L (α∗
t , αt)]−

s∑
t=r

L
(
α∗
t , α

i
t

))
+

(
s∑

t=r

L
(
α∗
t , α

i
t

)
−

s∑
t=r

L (α∗
t , α

⋆
t )

)

≤ η

n∑
t=m

E
[
L (α∗

t , αt)
2
]
+

1

η
(log(K/σ) + |I|2σ)︸ ︷︷ ︸

Applying Lemma 4

+
3

2γi
(1 + γi)

2

(
n∑

t=m+1

∣∣α⋆
t − α⋆

t−1

∣∣+ 1

)
+

1

2
γi|I|︸ ︷︷ ︸

Applying Lemma 5

There are two cases. If √∑n
t=m+1

∣∣α∗
t − α∗

t−1

∣∣+ 1

|I|
≥ γ1 (11)

then since

√∑n
t=m+1|α∗

t−α∗
t−1|+1

|I| ≤
√

1 + 1/|I| ≤ γk, we can find γi such that√∑n
t=m+1

∣∣α⋆
t − α⋆

t−1

∣∣+ 1

|I|
≤ γi ≤ 2

√∑n
t=m+1

∣∣α⋆
t − α⋆

t−1

∣∣+ 1

|I|

Plugging this back to the previous expression gives the desired result. Otherwise if 11 does not hold,
plug in γ1 for γi.
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A.4 Proof of SAOCP’s Dynamic Regret (Theorem3)

Proof This bound is obtained by applying the dynamic regret bound in Zhang et al. [2018]
(Corollary 5). Note that Algorithm2 additionally implies iterates ŝt ∈ [−η,D + η] ⊂ [−D, 2D]. We
can obtain

n∑
t=m

L (r∗t , r̂t)−min
r⋆m:n

n∑
t=m

L (r∗t , r⋆t ) ≤
(
B
[
Ṽ

1/3
[m,n]|I|

2/3 +
√
|I|
])

where

Ṽ[m,n] =

n∑
t=m+1

sup
r′∈[0,B]

∣∣L (r∗t , r′)− L (r∗t−1, r
′)∣∣ ≤ n∑

t=m+1

∣∣r∗t − r∗t−1

∣∣ = V[m,n]

The inequality is due to the fact that
∣∣L (r∗t , r′)− L (r∗t−1, r

′)∣∣ ≤ ∣∣r∗t − r∗t−1

∣∣ by the 1-Lipschitzness
of the quantile loss function.
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